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Two-term approximate solutions of the equations of gas dynamics in variables of the velocity 

hodograph are constructed both for subsonic flow containing an arbitrary analytic function of the 

complex variable and a sonic (critical) point and for supersonic motion having two arbitrary functions 

of the characteristic variables and the sonic point. The solutions are constructed without using the 

method of approximations. Tbese solutions are matched on the sonic line for transonic motion using 

an example. 

1. FUNDAMENTAL FORMULAE 

IT IS WELL known [l], that the velocity potential cp and the stream function w for the steady-state 
adiabatic motion of an ideal gas in the hodograph variables z, 8 satisfy a non-symmetrical 
linear system of partial differential equations with variable coefficients 

d’p+p* a9 aw_ 
at ==O, %-Q%-0, 

(1.1) 

p=L, Y2 
Y-l r=GIfi.l 

where u is the modulus of the velocity, u,,,,, is the limiting velocity of the flow, and y is the 
Poisson adiabatic index (for atmospheric air y = 1.4025). 

We change to physical coordinates X, y by means of the formula 

dz = (& + ipop-‘&)u-‘ea (z=x+iy) 

p=po(l-‘F)? M=4=[2p1/(1-T)]~ 
. 

(l-2) 

(p is the density, p,, is the characteristic density, and u, is the velocity of sound). 
In system (1.1) a change is usually made [2,3] to the new variable o = G(T) and one reduces it 

to a symmetrical form containing a single coefficient, namely, the Chaplygin function K = PQ, 
which depends implicitly on CL 

We will construct approximate solutions for the system of equations (1.1). 

fPrik1. Mat. Mekh. Vol. 51, No. 5, pp. 79-86, 1993. 
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2. SUBSONIC FLOW 

For subsonic motion (P z= 0, 0 s z c 2.) Eqs (1 .l) are of the elliptic type. The critical point at 
which the velocity of the flow is equal to the velocity of sound corresponds to the value 
2. =(‘y-l)l(y+l). 

An exact general solution and corresponding multiterm jet boundary-value problems for cp 
and w were constructed [l] by the method of separation of variables for system (1.1) in the 
form of converging series containing Gauss hypergeometric functions. Accurate general solu- 
tions for a symmetrical system of equations of gas dynamics in o, 8 variables were proposed [5] 
in the form of integral and differential series containing an arbitrary analytic function of the 
complex variable. 

Different approximate solutions for the symmetrical equations of gas dynamics are based on 
an approximation of the Chaplygin function [3,6]. 

We will construct an approximate solution for the system of equations (1.1) in the form of a 
two-term integral operator [5] 

cp = c,e - c2 i Pdz+ Re[a(T)w([) + Aj w(c)dc] 
7. 

u/ = Cl!* Q 
’ E+ c,9 + Im[p(z)w(c)+ Bj w(c)d[] (2.1) 

Here a(z), p(z) are continuous functions of a single variable 2, A and B are constants, and 
w(c) is an arbitrary analytic function of the complex argument [. 

Introducing the corresponding derivatives of (2.1) and (1.1) and using the well-known 
properties of analytical functions of a complex variable, we can write 

A(z)w’ = 0, Im A,(z)w + A(z)w’ = 0 (2.2) 

-BP 

A?(r) = A+ QP’- B(PQ$ 

A(T) = a - p( PQ$ 

These equations are satisfied identically for an arbitrary function w(c) if we impose the 
following conditions 

AI(T) = 0, A2t-O = 0, A(T) = 0 (2.3) 

The functions a and b can be determined, apart from additive constants of integration, from 
the first two differential equations (2.3). These constants can be omitted as unimportant for the 
operator (2.1) if, conversely, we use them so that at the critical point 2. the equations 
a(z.) = b(z) = 0 are satisfied. Then, for any index y we obtain the expressions 

a = -BI, + Al?, p = -AI, + Bl, (2.4) 
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Henceforth we will assume y=1.4 in the calculations. The integrals that occur here can be 
expressed in the following analytic form 

(2.5) 

All the function (2.5) are strictly negative and increase monotonically from --oo to 0, while 
the function s = -1, decreases from 00 to 0. 

The constants A and B in (2.4) can be chosen so that the parameter A(z) (2.3) over the whole 
interval 0 s z d 2. is close to zero: A(r) = 0, and any deviation from zero can be neglected in 
practice. The approximate soiution (2.1), (2.4) of system (1.1) obtained in this way is not 
encountered in the literature. 

The values of the functions a, p, S, A and M are calculated to the sixth decimal place for 
A = 0.829223 and B = 0.866714 (the values given in Table 1 are accurate to the fourth place). 
The functions o(z) c 0 and P(T) > 0. Here cz(z.) = p(z) = 0 and a(0) = p(O) = 0 (infinite values of 
the quantities (2.5) at the stagnation point z = 0 are reduced to zero in (2.4)). 

When solving direct boundary-value problems we will take the function w(c) in the form of 
a converging exponential series 

in which 0, A,, and B,, are real constants, found from the boundary conditions. Here and 
henceforth summation is carried out from n = 1 to n = 00. 

Taking (2.6) into account we can write (2.1) in the form 

cp= r,O-r, i P.&i- Z;tA,[~+(no)-~A]e”~ +B[a-(no)-‘Aje-“OS}COS~~oe 

t. 
(2.7) 

TABLE 1 

r MXld -UXlb’ /3Xlol -8 Ax IO4 

0 0 0 0 00 0 

0.01 225 47 250 1.141741 203 

0.03 393 230 433 0.618688 200 
0.05 513 287 491 0.390833 IY6 
0,07 613 295 500 0,2s 1754 178 

0.09 703 270 473 0.157140 15s 

0.11 786 219 413 0.090168 123 
0.13 864 146 318 o,cM3m5 81 
0.15 939 59 f78 0.012218 32 

‘k 1000 0 0 0 0 
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We will consider, as the simplest example in the extended formulation, the classical problem 
[l] of a symmetrical flow of gas from a slit of width 2H in a vessel bounded by two plane semi- 
infinite walls, which make an angle of 2h with each other. Free jets break away from the edges 
of the slit with a velocity equal to the velocity of sound, moving in the down flow direction to 
infinity where the width of their cross-section is equal to 2h. The origin of coordinates is on the 
axis of symmetry ox in the cross-section of the slit. 

In view of the symmetry we will consider the lower part of the flow in which 8 > 0. This flow 
is bounded by the streamline w =-Q (Q is half the gas flow rate) and w = 0 is the line of 
symmetry of the flow. 

We have the following boundary conditions 

yl = 0: e=o, OGTCZ. 

I+I=-Q: e=h, OS~CZ. 

ye=-Q: OSeSx, Z=Z. 

(2.8) 

To solve the problem we will write (2.7) with c, = 0 and A,, = 0 (n = 1, 2, . . .) 

cp=-c,j Pdz+ZB,[a-(no)-‘Ale--cosnfoO 
To 

(2.9) 
y = c,8 + CB,[B(no)-’ - P]e--sin n0e 

Assuming c, = -Q/h, o = a/h we can satisfy the first two conditions of (2.8). We can also 
satisfy the third condition if we expand the function f(t3) =Q(e/h-1) in a Fourier series in 
sin not3 in the interval 0 c 8 =S L and then obtain Z3, in the usual way 

B.=2Q(Sb)-‘[(-I)“(I-~)-I] n=1,2.... (2.10) 

Note that the function w in (2.9) when c, = 0 and 

4, =2Q(Lcos+?~)” (2.11) 

will represent the problem of a symmetrical stream flow of a jet of gas around a wedge having 
velocities equal to the velocity of sound at infinity and in jets separated from the ends of the 
wedge. 

In (2.11) h is the angle of the upper side of the wedge and u is the angle of the free jet in the 
downflow at infinity, which they make with the axis of symmetry OX. 

Note that at the critical point z = z, (a(~) = P(L) = S(L) = 0) for problem (2.8) and (2.9) cp 
and w are given by 

q(z*, e) - AX(m)-‘B,cosno0 
(2.12) 

w(r*, 0) = cze + BC(nw)-lB,sinnoe 

3. PARADOX OF THE APPROXIMATION 

The equality A(@ = 0 (2.3) can be satisfied exactly if we replace the quantities P and Q in it, 
for example, by the comparison functions q and Q,, given by 
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PCP, =a~-~. Q-Q, =bTq (4+) 
(3.1) 

(a, b and p are positive numbers). 
Introducing (3.1) into (2.3) and dropping the constants of integration as unimportant, we 

obtain the following equalities for the functions (2.4) and A(z) 

al-P +I 4-P 
I, =-, 

1-P 
12 =-, 

W-d 
(PQ)x = (ab)xTZ 

,_p’B 

I,=2 f 0 
xz 2 

2-p-q 
(3.2) 

The equation A(z) = 0 is satisfied when 

B =0, cl = (4 -pv3 (3.3) 

This case is convenient for approximating the two functions P and Q. 
Two other cases, namely, (1) aB = A(al b)l”, p = q and (2) A = 0, q = 4 -3p are unsuitable 

for such an approximation. 
The continuous curves in Fig. 1 represent graphs of the functions P and Q (l.l), and the 

dashed curves are graphs of the functions (3.1) for case (3.3) with p= 1.22, a=0.20 and 
b = 2.08. The values of Q are plotted multiplied by 103. It can easily be shown by calculation 
that a peculiar approximation paradox arises here consisting of the fact that in the section 
0.05~ ~~0.11, in which the approximations of the functions P and Q by functions (3.1) are 
satisfactory, the parameter A(z) (2.3) under the same conditions (the constants of integration 
are dropped) for exact values of P and Q differs considerably from zero, and this parameter 
increases monotonically from A(0) = --oo to A(G) = 0. In the section considered it takes values 
of A(O.05) = -1.1 and A(O.ll) = -0.42, i.e. it differs considerably from zero. This discrepancy can 
obviously occur if the approximation (3.1) goes outside the framework of the classification of 
the group properties of differential equations established in [7] for the Chaplygin function, 
which occurs in the second-order equation for the stream function w. 
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This paradox can be eliminated by putting, for example, the constant A = 0.01, on which, 
however, the approximation does not depend. In this case, the need for approximation (3.1) 
generally disappears, and also the need to consider the case (3.3) in hydrodynamics. On the 
other hand, an additional “mechanism” for estimating the approximation arises. 

4.SUPERSONICFLOW 

In the supersonic flow of a gas (P ~0, Z. s TCT,) the system of equations (1.1) becomes 
hyperbolic 

(4.1) 

For symmetrical equations of supersonic gas dynamics we know (for example, [2, 3, 61) 
approximate solutions obtained using the Chaplygin-function approximation, which depend 
implicitly on 0 = o(2). 

By analogy with (2.1) we will seek a solution of the system of equations (4.1) in the form of a 
finite integral operator 

(4.2) 

c=a-0, q=a+e [$ (gdg 

where c,, c,, E and D are constants, andf(E,), F(q) are arbitrary functions of the characteristic 
variables 5, q. 

The functions dr), 8(r) must be chosen in such a way that formulae (4.2) satisfy system (4.1) 
for arbitrary fand F. We will introduce into (4.1) the corresponding derivatives of (4.2). 

(y’+ Ea’+ Dx)(f -t F) + a’[y + 6(~Q)$(f’+ F’) = 0 
(4.3) 

These equations are satisfied identically if y and 6 are subject to the conditions 

y=-Ea-Dj X~T, 6=-Ej Q-‘d+Da 
x. T. 

A(z) = y + So = 0 

Here, for the case when w = 1.4 we have 

(4.4) 

(4.5) 
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(4.6) 

A calculation of expression (4.5) and (4.6) to six places of decimals showed that for 
E = 0.086021 and D = 0.034710 in the range 2. s z s 0.34 we have I A_(z) IS 0.0019. 

In Table 2, for these values of 2, the parameter A(z) is negative, and at the points 2, = 0.28 
and z, = 0.30 are positive, and the function a < 0. 

Over this section the solution (4.2), (4.4) can also be used in practice as an approximate 
solution for the system of equations (4.1). 

It is easy to show that if x and Q in the section 0.26 G ‘5 G 0.416 are replaced by the hypo- 
thetical expressions 

(4.7) 

then A(z) = 0 everywhere, and for D= 0, p= 2.853646 (q = 2.284549), a, = 144.3216 and 
4 = 23.9579 the graphs of the functions x and Q and the functions (4.7) are close to one 
another (Fig. 2-the scale for Q is increased by a factor of five). 

Here, as in the case of subsonic motion, the approximation does not depend on the constant 
E and a similar paradox arises, that is, the parameter A(T) (in the section of satisfactory 
approximation) differs considerably from zero, being calculated for exact values of x and Q. 

When solving direct boundary-value problems in the characteristic variables one can use, for 
example, the method described in [3]. We will not dwell on this here. 

We will consider an example of a continuous solution with the possibility of a transition 
(matching) through a critical point. For this we will take f and Fin the form 

TABLE 2 

7 M +xX ld px100 0x104 -Axlo’ 

‘16 1 0 0 0 0 
0.18 1.05 24 18 79 14 
0.20 1.12 51 37 2% 19 
0.22 1,19 75 50 568 15 

0.24 1.26 97 59 873 7 
0.26 1.33 120 65 1199 5 
0.28 1.39 145 67 1541 -4 
0.30 1.46 172 68 1893 -4 
0.32 1.57 204 66 2253 1 
0.34 1.61 240 63 2619 16 
0.36 1.68 282 59 2991 41 
0.38 1.75 331 53 3367 79 
0.40 1.83 388 46 3747 135 
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&4 I 
FIG. 2. 

(a, a, and b, are constants, II = 1, 2, . . .). Then (4.2) with c, = 0 take the form 

‘p=c,j ~dz+~(a,[ysinnna-E(nR)-‘cosnna]+ 
G 

(4.8) 

~=cz~+C(b,[6sinnRa-D(n~)-‘cosn~]- 

-a,@cosnti + D(n~Z)-‘sinnRo])sinnne 

If we put c, = -Q/h, CJ = rrlh here, the function w will satisfy the first two conditions of (2.8). 
We will take into account the fact that ~(7.) = Z(L) = CJ(L) = 0, and equating expressions (2.12) 
and (4.8) to one another (matching) when z = z., we obtain the following relation (succession) 
between the constants 

a, = AB,,lE, b, = -BB,,lD (n = 1,2,. ..) 

which ensures that the third condition of (2.8) is satisfied and, at the same time, enables us to 
consider transonic motion in the neighbourhood of the sonic line, and then extend the 
investigation into the supersonic part of the flow in characteristic variables using the scheme 
described in [3,6,8]. 
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